

Technisches Handbuch

Absolut Drehgeber ACURO® industry mit **DeviceNet**

Ihr Partner für Standard- und Sonderausführungen – präzise, zuverlässig und schnell –

Hohner Elektrotechnik GmbH Gewerbehof 1 59368 Werne Phone +49 - 2389 - 9878-0 Fax +49 - 2389 - 9878-27 E-Mail info@hohner-elektrotechnik.de Web www.hohner-elektrotechnik.de

Inhalt

1		Definitionen	5
2		Sicherheits- und Betriebshinweise	6
3		Allgemeine Angaben	7
	3.1	Einführung	7
	3.2	Anwendungsbereich	7
4		DeviceNet Grundlagen	8
5		Funktionsbeschreibung	10
	5.1	Einführung	10
	5.2	Objektmodell	10
	5.3	I/O Assembly-Instanzen	11
	5.4	Format der I/O Assembly-Datenattribute	11
	5.5 E E	Definition des nerstellerspezifischen Objektes (Geberparameter)	12
	5.5. 5.5	2 Instanzenattribute	I2 13
	5.6	Parameterbeschreibung	13 14
	5.6	1 Anzahl Attribute (Attr. 100)	14
	5.6.	2 Code-Wertefolge (Attr. 102)	14
	5.6.	3 Enable Skalierung (Attr. 103)	14
	5.6.	4 Messschritte pro Umdrehung (Attr. 104)	14
	5.6.	5 Gesamtanzahl der Messschritte (Attr. 105)	15
	5.6.	.6 Preset-Wert (Attr. 106)	15
	5.6.	7 Positionswert (Attr. 107)	16
	5.6.	8 Singleturn-Auflösung (Attr. 108)	16
	5.6.	9 Anzahl der Umdrehungen (Attr. 109)	16
	5.6.	10 Alarm Flag (Attr. 110)	17
	5.0. 5.6	12 Profil und Softwareversion (Attr. 112)	17
	5.0.	13 Offset-Wert (Attr. 113)	17
	57	Service Funktionen	18
~	0		10
6	6.4	Busanschluss	19
	0.1		19
	6.2	1 Bushauha mit zwai Kabalverschraubungen	19
	6.2	2 Bushaube mit zwei Kabelverschraubung und einer M12-Buchse	20
	6.2.	.3 Bushaube mit M12x1-Stecker 5-Polig	22
	6.3	Anschlussbild	23
	6.4	Kabel-Anschluss über PG Verschraubung	23
7		Bedien- und Anzeigeelemente	24
	7.1	DIP-Schalter (S1)	24
	7.1.	1 MAC-ID einstellen	24
	7.1.	2 Einstellung der Baudrate	25
	7.1.	3 Aktivieren des Abschlusswiderstands	25
	7.2	LED-Anzeige bei Bushaube	26
	1.3	I ICO-ANZEIGE	
	1.3. 72		2/
	7.3. 7.3	2 Anschlusshelegung	22 2ହ
	7.5.		20

8	Inbetriebnahme	29
8.1	Versorgungsspannung einschalten	29
8.2	2 Geberprogrammierung	29
8.2	2.1 Standardwerte-Übersicht	32
8.3	Beispiele für Skalierung und Abspeichern ins EEPROM	32
9	Technische Daten	35
9.1	Mechanisch	35
9.2	2 Elektrisch	36
10	Maßzeichnungen	37
10.	.1 Synchroflansch	37
10.	.2 Klemmflansch	38
10.	.3 Quadratflansch	39
10.	.4 Federblech	40
12	Bestellschüssel	41

1 Definitionen

Dieses Technische Handbuch beschreibt die Software, Parametrierung und Inbetriebnahme des Drehgebers.

Symbolerklärung:

Dieses Symbol steht bei Textstellen, die besonders zu beachten sind, damit der ordnungsgemäße Einsatz gewährleistet ist und **Gefahren** ausgeschlossen werden.

Dieses Symbol gibt wichtige Hinweise für den **sachgerechten Umgang** mit dem Drehgeber.

Das Nichtbeachten dieser Hinweise kann zu Störungen an dem Drehgeber oder in der Umgebung führen.

Dieses Symbol zeigt Handlungs-Anweisungen an.

Verwendete Abkürzungen:

- LSB Least Significant Bit/Byte
- MSB Most Significant Bit/Byte
- **COS** Change of State Zustandswechsel

Verschiedenes:

Zahlenangaben falls nicht explizit angegeben, werden dezimale Werte als Ziffern ohne Zusatz angegeben (z.B. 1408), binäre Werte werden mit b (z.B.1101b), hexadezimale Werte mit h (z.B. 680h) hinter den Ziffern gekennzeichnet.

2 Sicherheits- und Betriebshinweise

Die Absolut-Drehgeber der Modellreihe ACURO[®]industry sind nach den anerkannten Regeln der Elektrotechnik hergestellte Qualitätsprodukte. Die Geräte haben das Herstellerwerk in sicherheitstechnisch einwandfreiem Zustand verlassen.

Deshalb:

- Berücksichtigen sie die technischen Spezifikationen in dieser Dokumentation. Dadurch erhalten sie einen sicherheitstechnisch einwandfreien Zustand und einen störungsfreien Betrieb.
- Nur eine Elektrofachkraft darf elektrische Geräte einbauen und montieren!
- Die Geräte dürfen <u>nur</u> innerhalb der Grenzwerte betrieben werden. (siehe technische Daten)
- Die maximalen Betriebsspannungen dürfen nicht überschritten werden! Die Geräte sind nach DIN EN 61010 Teil1, Schutzklasse III gebaut. Sie müssen zur Verhinderung von gefährlichen Körperströmen mit Sicherheitskleinspannung (SELV) betrieben werden. Außerdem müssen sie sich in einem Bereich mit Potentialausgleich befinden.
- Verwenden Sie zum Schutz eine externe Sicherung (siehe Elektrische Daten).
- Anwendungsbereich: industrielle Prozesse und Steuerungen. Begrenzen sie Überspannungen an den Anschlussklemmen auf Werte der Überspannungskategorie II.
- Sie müssen vermeiden, dass Schocks auf das Gehäuse und vor allem auf die Geberwelle einwirken. Ebenso müssen sie vermeiden, dass die Geberwelle axial und radial überbelastet wird.
- Verwenden Sie nur eine geeignete Kupplung um die maximale Genauigkeit und Lebensdauer der Geber zu garantieren.
- Die guten EMV^{*}-Werte gelten nur in Verbindung mit den serienmäßig gelieferten Kabeln und Steckern. Bei geschirmten Kabeln müssen sie den Schirm beidseitig und großflächig mit Erde verbinden. Auch die Leitungen zur Spannungsversorgung müssen vollständig geschirmt sein. Ist dies nicht möglich, müssen sie entsprechende Filtermaßnahmen ergreifen.
- Die Einbauumgebung und Verkabelung hat maßgeblichen Einfluss auf die EMV des Gebers. Der Installateur muss deshalb die EMV der gesamten Anlage (Gerät) sicherstellen.
- Bei der Installation in elektrostatisch gefährdeten Bereichen müssen sie darauf achten Stecker und anzuschließendes Kabel vor ESD zu schützen.

*Elektromagnetische Verträglichkeit

3 Allgemeine Angaben

3.1 Einführung

Der ACURO industry ist ein absoluter Drehgeber (Geber, Winkelkodierer), der in der hier beschriebenen Version über das Übertragungsmedium "CAN-Bus" (physikalisch: verdrillte und abgeschirmte 2-Draht-Leitung) seine aktuelle Position an einen anderen Busteilnehmer sendet.

Die Busankopplung ist international genormt nach ISO-DIS 11898 (CAN High Speed). Das am meist herausragende Merkmal des CAN-Protokolls ist dessen hohe Übertragungs-Sicherheit (Hamming-Distanz = 6).

3.2 Anwendungsbereich

In Systemen, in denen die Position eines Antriebes bzw. eines anderen Maschinenteiles erfasst und an eine Steuerung gemeldet werden muss übernimmt der ACURO industry diese Aufgabe. Der ACURO industry löst damit z.B. Positionieraufgaben, indem er die aktuelle Antriebsposition über das DeviceNet an die Positioniereinheit zurückmeldet.

4 DeviceNet Grundlagen

Geschichte und Technologie

Geschichte

- · Basistechnologie von Allen-Bradley entwickelt
- · Einführung März 1994
- Gründung der DeviceNet Hersteller- und Nutzerorganisation ODVA (Open DeviceNet Vendor Association) im April 1995

Technologie

- · CAN-Schicht 2 (Data Link Layer) ISO 11898 und 11519-1
- DeviceNet umfasst Schicht 7 (Application Layer) und Schicht 1 (Physical Layer), entworfen für die Industrieautomation

Hauptvorteile

- · verringerter Verkabelungs- und Installationsaufwand
- · verringerte Anlaufzeit
- · verringerte Stillstandszeit
- · schnelle Fehlerbehebung
- · Geräte entfernen, einfügen und ersetzen ohne Herunterfahren des Netzwerks
- · Austauschbarkeit zwischen Geräten verschiedener Hersteller
- · Gerätekonfiguration über das Netzwerk

Lineare Bus-Topologie (Hauptstrang- Stichleitung)

Netzwerk-Spezifikationen

i

Weiter Informationen zu DeviceNet erhalten Sie über:

http://www.odva.org E-Mail: odva@powerinternet.com

5 Funktionsbeschreibung

5.1 Einführung

Die integrierte CAN-Bus-Schnittstelle des Absolutgebers unterstützt alle DeviceNet-Funktionen. Folgende Modi sind programmierbar:

- Pollmodus

Polled mode und Bit strobe können gleichzeitig Genutzt werden.

COS und cyclic sollten sie getrennt verwenden

- Bit strobe
- Zustandswechsel (Change of State COS) (das Zeitintervall kann zusätzlich über "Sperrzeit" begrenzt werden)
- Zyklisch(cyclic) (programmierbar in den Zeitintervallen 5, 10, 15, ... 65535 ms)

Der Geber unterstützt die Programmierung folgender Funktionen:

- Code-Wertefolge
- Messschritte pro Umdrehung
- Gesamtanzahl der Messschritte
- Preset-Wert

Folgende Statusinformationen sind auslesbar:

- Physikalische Auflösung
- Alarm Flag
- Gebertyp
- Profil- und Softwareversion
- Offset-Wert

5.2 Objektmodell

Das Objektmodell in Abb. 1 stellt einen Geber dar. Untenstehende Tabelle zeigt:

- · die Objektklassen
- · ob die Klasse zwingend erforderlich ist
- \cdot die Anzahl der Instanzen in jeder Klasse

Objektklasse	Anzahl Instanzen
01h: Identity	1
02h: Message Router	1
03h: DeviceNet	1
05h: Connection	1 Explizit, 3 E/Q
04h: Assembly	2
64h: Herstellerspezifisch	1

Abb. 1

5.3 I/O Assembly-Instanzen

Die folgende Tabelle weist die vom Geber unterstützten Instanzen aus.

Nummer	Тур	Bezeichnung
1	Eingabe	Positionswert
2	Eingabe	Positionswert und Alarm Flag

5.4 Format der I/O Assembly-Datenattribute

Instanz	Byte	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1	0								
	1								
	2				Positio	nswert			
	3								
2	0								
(Default)	1								
	2			Po	sitionsw	ert			
	3								
	4				reserviert				Alarm
									Flag

Die I/O Assembly-Datenattribute haben untenstehendes Format.

5.5 Definition des herstellerspezifischen Objektes (Geberparameter)

Klassencode: 64_h

5.5.1 Klassenattribute

Attribut ID	Zugriffsregel	Bezeichnung	Datentyp*	Attribut- beschreibung	Wertebe- deutung
1	Get	Version	UINT	Version dieses Objekts BEACHTE: Alle Klassen- Definitionen müssen dieses Attribut enthalten	Der diesem Attribut aktuell zugewiesen e Wert ist (01). Bei Updates wird dieser Wert jedes Mal um 1 erhöht.
2	Get	Max. Instanz	UINT	Maximale Instanzenanzahl eines Objektes.	Die größte Instanzenan zahl eines Objektes in dieser Klassen- hierarchieeb ene

*Deklaration der Datentypen:

Datentyp	Datenlänge	Beschreibung
BOOL	1 Bit	Boolean
SINT	1 Byte	Signed Short Integer
USINT	1 Byte	Unsigned Short Integer
DINT	4 Byte	Signed double Integer
UDINT	4 Byte	Unsigned double Integer
INT	2 Byte	Integer
UINT	2 Byte	Unsigned Integer

5.5.2 Instanzenattribute

Wegen der unterschiedlichen Funktionalität sind die Instanzenattribute in zwei Abschnitte unterteilt.

Der erste Abschnitt enthält die Geberparameter zur Einstellung des Positionswertes sowie Steuerfunktionen (Attribute 100...108). Im Attributbereich 109...113 sind Diagnosefunktionen integriert.

Attrib	Zugriffsregel	Bezeichnun	Datentyp*	Attributbeschreibungen	Werteb
utid		gen			e-
					g
100	Get	Anzahl	USINT	Anzahl unterstützter	
		Attribute		Attribute	
102	Get/Set	Code-	BOOL	Zählrichtungs-Steuerung	0 = CW
		Wertefolge			1 = CCW
103	Get/Set	Enable	BOOL	Freigabe der	0 = OFF
		Skalierung		Skalierungsfunktion	1 = ON
104	Get/Set	Messschritte	UDINT	Anzahl der gewünschten	
		pro		Messschritte pro Umdrehung	
		Umdrehung		(kleiner als die physikalische	
		_		Auflösung	
105	Get/Set	Gesamtanza	UDINT	Anzahl der gewünschten	
		hl der		Messschritte über den	
		n		gesamten Messbereich	
106	Get/Set	Presetwert		Positions-Ausgabewert wird	
100	001001	11000000000	O BIII	auf den Preset-Wert gesetzt	
107	Get	Positionswer	UDINT	Aktuelle Position (nach der	
		t		Skalierung)	
108	Get	Singleturn-	UDINT	Physikalische Anzahl der	
		Auflösung		Messschritte pro	
				Umdrehungen	
109	Get	Anzahl der	UINT	Physikalische Anzahl der	
		Umarenunge		enassbaren Umdrenungen	
110	Get	Alarm Flag	BOOL	Zeigt das Auftreten eines	0 = OK
110	001	/ dann r lag	DOOL	Alarms an	1 =
					Alarm
111	Get	Gebertyp	UINT	Zeigt den Gebertyp an	
112	Get	Profil- und	UDINT	Low word: Profilversion	
		Software-		High word:	
		Version		Softwareversion	
113	Get	Offset-Wert	DINT	Der Offset-Wert wird durch	
				die Preset-Funktion	
				errechnet. Der Positionswert	
				Offeet Wort verscheher	
	1			Offset-wert verschopen.	

5.6 Parameterbeschreibung

 Reihenfolge der Parameterübertragung bei eingeschalteter Skalierung:
 Zuerst Skalierungsparameter übertragen (Attr.ID 104 und 105) und dann erst einen eventuellen Presetwert (Attr.ID 106) übertragen.
 Die Preset-Funktion darf nur bei Geberstillstand benutzt werden.

5.6.1 Anzahl Attribute (Attr. 100)

Dieser Parameter gibt die Gesamtzahl aller installierten Attribute des Geräts zurück.

5.6.2 Code-Wertefolge (Attr. 102)

Die Code-Wertefolge bestimmt, ob steigende oder fallende Positionswerte ausgegeben werden, wenn die Geberwelle im oder gegen den Uhrzeigersinn rotiert (mit Blick auf die Welle).

Standardwert: Bit = 0 - steigende Code-Wertefolge bei Wellendrehung im Uhrzeigersinn.

5.6.3 Enable Skalierung (Attr. 103)

Mit Hilfe der Skalierungsfunktion berechnet die Gebersoftware den Positionswert, um die physikalische Auflösung des Gebers zu ändern.

Die Parameter "Messschritte pro Umdrehung" und "Gesamtanzahl der Messschritte" sind die Skalierungsparameter. Wenn Enable Skalierung auf Null gesetzt ist, ist die Skalierungsfunktion abgeschaltet.

 Bei Enable Skalierung = 0 ist die Skalierungsfunktion nicht aktiviert.
 Zum Einschalten der Skalierung muss Enable Skalierung gesetzt werden. Standardwert: Bit = 0 – Skalierung AUS

5.6.4 Messschritte pro Umdrehung (Attr. 104)

Der Parameter "Messschritte pro Umdrehung" setzt die Anzahl unterscheidbarer Schritte (physikalische Auflösung) pro Umdrehung. Der Geber errechnet intern den jeweiligen Skalierungsfaktor.

 Die "Gesamtanzahl der Messschritte" wird durch Attr. 105 gesetzt.
 Der resultierende Skalierungsfaktor SKF (mit dem physikalischen Positionswert multipliziert wird) lässt sich nach folgender Formel errechnen:

108)

Messschritte pro Umdrehung (Attr. 104)

Dateninhalt:

Byte 0	Byte 1	Byte 2	Byte 3
2720	21528	223216	231224

Wertebereich: 0 ... (max. phys. Auflösung pro Umdrehung) Standardwert = physikalische Auflösung pro Umdrehung

5.6.5 Gesamtanzahl der Messschritte (Attr. 105)

Der Parameter "Gesamtanzahl der Messschritte" setzt die Anzahl der aufzulösenden Schritte über den Gesamtmessbereich.

 Die Messschritte pro Umdrehung (Auflösung) werden über Attr. 104 gesetzt.
 Bei Änderung der Messsschritte-Gesamtzahl wird ein vorher programmierter Preset-Wert gelöscht.

Wenn Sie den Geber im Endlosbetrieb nutzen, so muss die "Gesamtanzahl der Messschritte" ein Vielfaches der "Messschritte pro Umdrehung" betragen: 2^{X} · Messschritte pro Umdrehung (Attr. 104) mit x=1 … 12

Dateninhalt:

Byte 0	Byte 1	Byte 2	Byte 3
2720	21528	223216	231224

Wertebereich: 0 ... (physikalische Gesamtauflösung) Standardwert = physikalische Gesamtauflösung

5.6.6 Preset-Wert (Attr. 106)

Die Preset-Funktion ermöglicht die Anpassung des Geber-Nullpunktes an den mechanischen System-Nullpunkt.

Der aktuell ausgegebene Position wird auf den Preset-Wert gesetzt. Der dadurch resultierende Offset zum eigentlichen Positionswert wird errechnet und im Geber gespeichert.

 Der Preset-Wert wird gelöscht, wenn sich die Code-Wertefolge ändert oder die Skalierung aktiviert oder geändert wird (siehe Attr. 102, 103, 104, 105). Im Geber wird aus dem Preset-Wert ein entsprechender Offset-Wert berechnet und zum eigentlichen Positionswert addiert (Offset = Preset - Position).

Dateninhalt:

Byte 0	Byte 1	Byte 2	Byte 3
2720	21528	223216	231224

Wertebereich: 0 ... (programmierte Gesamtauflösung)

Standardwert = FFFF FFFFh, d.h. "Kein Preset/Offset"

Durch Übertragung des Werts FFFF FFFFh wird der Preset-Wert gelöscht (errechneter Offset-Wert wird auf 0 gesetzt)!

5.6.7 Positionswert (Attr. 107)

Der Geber liefert den aktuellen Positionswert (nach Verrechnung mit Skalierungsfaktor, Preset/Offset) zurück.

Dateninhalt:

Byte 0	Byte 1	Byte 2	Byte 3
2720	21528	223 <u></u> 216	231224

5.6.8 Singleturn-Auflösung (Attr. 108)

Das Objekt zeigt die physikalische Auflösung pro Umdrehung (Anzahl Positionswerte auf der Singleturn-Codescheibe). Der Wert hängt vom Gebertyp ab.

Dateninhalt:

Byte 0	Byte 1	Byte 2	Byte 3	
2720	21528	223 <u></u> 216	231224	

5.6.9 Anzahl der Umdrehungen (Attr. 109)

Das Objekt zeigt die Anzahl der Umdrehungen, die der Geber erfassen kann. Der Wert hängt vom Gebertyp ab.

Dateninhalt:

Byte 1	
21528	

5.6.10 Alarm Flag (Attr. 110)

Das Alarm Flag-Bit zeigt an, ob einer der definierten Alarmzustände aktiv ist.

5.6.11 Gebertyp (Attr. 111)

Code	Definition
01	Singleturn-Absolutdrehgeber
02	Multiturn-Absolutdrehgeber

5.6.12 Profil- und Softwareversion (Attr. 112)

Dieses Objekt enthält in den ersten 16 Bits die im Geber implementierte Profilversion. Sie setzt sich aus einer Änderungsnummer und einem Index zusammen. Beispiel: Profilversion: 1.00

binär: 00000001 0000000 hexadezimal: 01h 00h

Die folgenden 16 Bits enthalten die im Geber implementierte Softwareversion. Sie setzt sich aus einer Änderungsnummer und einem Index zusammen. Beispiel: Softwareversion: 1.20 binär: 00000001 00100000 hexadezimal: 01h 20h

PARAMETERAUFBAU

Profilversion		Softwareversion		
Byte 0	Byte 1	Byte 2	Byte 3	
2720	215 <u></u> 28	223216	231224	

5.6.13 Offset-Wert (Attr. 113)

Attribut 113 enthält den Parameter Offset-Wert. Der Offset-Wert wird von der Preset-Funktion

(siehe Attr. 106) errechnet und verschiebt den Positionswert um den errechneten Wert.

Der Offset-Wert wird gespeichert und kann vom Geber gelesen werden.

5.7 Service Funktionen

Das Objekt Geberparameter unterstützt folgende Service Funktionen:

Service Code	Implementierung		Service – Bezeichnung	Beschreibung
	Klasse	Instanz		
0x0E	zwingend	zwingend	Get_Attribute_Single	Gibt den Inhalt eines bestimmten Einzelattributes zurück
0x10	Optional	Optional	Set_Attribute_Single	Ändert ein bestimmtes Einzelattribut
0x05	Optional	N/a	Reset*	Setzt alle Parameterwerte auf die Werkseinstellung zurück
0x15	Optional	N/a	Restore*	Setzt alle Parameterwerte auf die, zuletzt im EEPROM abgespeicherten Werte
0x16	Optional	N/a	Save*	Speichert alle Parameter im EEPROM

6 Busanschluss

6.1 Warnhinweise

Die angegebenen EMV-Werte gelten nur für DeviceNet spezifizierte Kabel.

Spannungsspitzen auf den Versorgungsleitungen sind durch die Vorgeschaltete Spannungsversorgung auf maximal 1000 V zu begrenzen.

Der Schirm des DeviceNet-Kabels muss an der Stelle der Stromeinspeisung galvanisch geerdet werden.

Geberseitig muss der Schirm abgetrennt werden und darf keine galvanische Verbindung zum Geber haben.

Der durchgehende CAN-Bus muss zwischen CAN_H und CAN_L an beiden Enden mit einem Busabschlusswiderstand von 120 Ohm (min 0,25 Watt) abgeschlossen werden

6.2 Anschlussarten

Für DeviceNet – Drehgeber sind drei Anschlussvarianten verfügbar. Im Folgenden wird beschrieben, wie die jeweilige Anschlussvariante an den Bus anzuschließen ist.

Anschlussvariante	Seite
Bushaube mit zwei Kabelverschraubungen	20
Bushaube mit zwei Kabelverschraubungen und einer M12 - Buchse	21
Bushaube mit M12x1-Stecker 5-Polig	22

6.2.1 Bushaube mit zwei Kabelverschraubungen

 \Rightarrow Schrauben lösen und Bushaube vom Geber abziehen.

\Rightarrow Blickfeld: in die geöffnete Bushaube

⇒ DeviceNet - Kabel durch die linke Kabelverschraubung führen und an der Klemme 1 (UB in (10...30V)), Klemme 2 (0V in), Klemme 3 (CAN-L), Klemme 4 (CAN-H) und Klemme 5 (Drain) anschließen. (Siehe Anschlussbild, Seite 23). Kabelschirm an der Kabelverschraubung isolieren (siehe Grafik Kabel-Anschluss, Seite 23).

Die Drain-Leitung muss in der Bushaube angeschlossen, der Geberflansch geerdet sein. Der Kabelschirm muss geberseitig abgetrennt sein und darf keine galvanische Verbindung zum Geber haben.

⇒ Falls im gleichen Bus-Strang keine weiteren Geräte folgen: In der Bushaube den Busabschlusswiderstand (DIP-Schalter 9 und 10 von S1 auf "ON") aktivieren! Rechte Kabel-Verschraubung durch Verschlussschraube ersetzen.

⇒ Falls im Bus-Strang noch weitere Geräte folgen: Weiterführendes Kabel durch die rechte Kabelverschraubung führen und an der Klemme 6 (Drain), Klemme 7 (CAN-H), Klemme 8 (CAN-L), Klemme 9 (0V out)und Klemme 10 (UB out (10...30V)) anschließen (Siehe Anschlussbild, Seite 23). Kabelschirm an der Kabelverschraubung isolieren (siehe Grafik Kabel-Anschluss, Seite 23).

 \Rightarrow Bushaube auf Geber stecken und Schrauben anziehen.

6.2.2 Bushaube mit zwei Kabelverschraubung und einer M12-Buchse

 \Rightarrow Schrauben lösen und Bushaube vom Geber abziehen.

\Rightarrow Blickfeld: in die geöffnete Bushaube

⇒ DeviceNet - Kabel durch die linke Kabelverschraubung führen und an der Klemme 1 (UB in (10...30V)), Klemme 2 (0V in), Klemme 3 (CAN-L), Klemme 4 (CAN-H) und Klemme 5 (Drain) anschließen. (Siehe Anschlussbild, Seite 23). Kabelschirm an der Kabelverschraubung isolieren (siehe Grafik Kabel-Anschluss, Seite 23).

Die Drain-Leitung muss in der Bushaube angeschlossen, der Geberflansch geerdet sein. Der Kabelschirm muss geberseitig abgetrennt sein und darf keine galvanische Verbindung zum Geber haben.

- ⇒ Falls im gleichen Bus-Strang keine weiteren Geräte folgen: In der Bushaube den Busabschlusswiderstand (DIP-Schalter 9 und 10 von S1 auf "ON") aktivieren! Rechte Kabel-Verschraubung durch Verschlussschraube ersetzen.
- ⇒ Falls im Bus-Strang noch weitere Geräte folgen: Weiterführendes Kabel durch die rechte Kabelverschraubung führen und an der Klemme 6 (Drain), Klemme 7 (CAN-H), Klemme 8 (CAN-L), Klemme 9 (0V out)und Klemme 10 (UB out (10...30V)) anschließen (Siehe Anschlussbild, Seite 23). Kabelschirm an der Kabelverschraubung isolieren (siehe Grafik Kabel-Anschluss, Seite 23).
- \Rightarrow Bushaube auf Geber stecken und Schrauben anziehen.
- \Rightarrow Tico-Anzeige(siehe 7.3) an M12-Buchse anschließen

6.2.3 Bushaube mit M12x1-Stecker 5-Polig

 \Rightarrow Geber über die Stichleitung mit T-Verteiler an den Busstrang anschließen

Anschlussbelegung:

PIN	STECKER	
1	DRAIN	
2	UB in (1030V)	
3	0V in	
4	CAN-H	
5	CAN-L	

6.3 Anschlussbild

Klemmleiste KL 1 (10-polig)		
Nr.	Signalname	
1	UB in (10…30V)	
2	0V in	
3	CAN-L	
4	CAN-H	
5	DRAIN	
6	DRAIN	
7	CAN-H	
8	CAN-L	
9	0V out	
10	UB out (1030V)	

6.4 Kabel-Anschluss über PG Verschraubung

Anschlussbelegung:

7 Bedien- und Anzeigeelemente

7.1 DIP-Schalter (S1)

\Rightarrow Die DIP-Schalter sind bei abgezogener Bushaube zugänglich

Mit den DIP-Schaltern:

- 1 bis 6 von S1wird die MAC-ID eingestellt.
- 7 und 8 von S1 wird die Baudrate eingestellt.
- 9 und 10 wird der Abschlusswiderstand aktiviert.

 Die DIP-Schalter werden nur beim Hochlaufen des Gebers (nach Reset oder Power-Up) ausgewertet. Eine Änderung der Schalterstellung hat damit bis zum nächsten Reset/Power-Up keine Wirkung.

7.1.1 MAC-ID einstellen

Der 6-Bit-MAC-ID wird hardwareseitig über DIP-Schalter 1 bis 6 eingestellt:

DIP- Schalter	1	2	3	4	5	6
	MSB					LSB
Wert	32	16	8	4	2	1

DIP-Schalterstellungen: ON = 1, OFF = 0

Die zulässige MAC-IDs liegen im Bereich 0...63.
 Jede MAC-ID darf nur einmal im Netzwerk vorhanden sein!
 Standardeinstellungen: DIP-Schalter auf "ON" d.h. resultierende MAC-ID = 63

7.1.2 Einstellung der Baudrate

Die Baudrate kann über die DIP-Schalter 7 und 8 eingestellt werden:

DIP-Schalter (ON = 1, 0FF = 0)			Baudrate in
	DIP7	DIP8	KBit/s
	OFF	OFF	125
	OFF	ON	250
	ON	OFF	500
	ON	ON	500 (Default)

Die Standardeinstellung für die Baudrate ist
 500 Kbit/s (DIP 7+8 = ON)

7.1.3 Aktivieren des Abschlusswiderstands

 \Rightarrow DIP-Schalter 9 und 10 auf "ON" stellen, falls der Geber das letzte Gerät am BUS ist

- Wenn sie extern einen Abschlusswiderstand anschließen müssen sie folgende Werte beachten: 120 Ohm, Metallfilm, min 0,25 W
- Bei Verwendung eines externen Abschluss muss der interne Abschluss deaktiviert sein (DIP 9 und DIP 10 = off)

7.2 LED-Anzeige bei Bushaube

	LED	Bedeutung	Mögliche Fehlerursache
Power	AUS	keine Spannungsversorgung	ausgeschaltet
(grün)	EIN	Spannungsversorgung ist in Ordnung	
	AUS	Geberteil liefert fehlerfreie Positionsdaten	
Error (rot)		Cobortoil liofort koino odor	- Unterbrechung BUS-Teil zu Geberteil
(101)	Blinkend	falsche Positionsdaten	- Gültiger LED- Sendestromregelbereich verlassen
	AUS	Keine Verbindung zum Master	 Datenleitungsunterbrechung Vertauschte Datenleitung Baudrate falsch eingestellt
		Verbindung zum Master;	
Bus (arün)	Blinkend	"Duplicate MAC ID check erfolgreich durchgeführt;	
(3)		Status: "keine explizite Verbindung"	
	EIN	Verbindung zum Master; Status: "Explizite Verbindung besteht"	

7.3 **Tico-Anzeige**

Bei der Ausführung mit zwei Kabelverschraubungen und einer M 12 Buchse kann eine Tico-Anzeige mitgeliefert werden

7.3.1 Anzeige bei sachgerechtem Anschluss

- \Rightarrow Tico Busanzeige an M 12- Buchse anschließen
- \Rightarrow einschalten

Auf dem Display erscheint nun in einem Zeitintervall von drei Sekunden

Busart (DeviceNet)

Knotennummer z.B. 002

7.3.2 Fehlermeldungen

Kommunikationsproblem zwischen Geber und Bus-Interface

Geber meldet Hardwarefehler

am Tico:

7.3.3 Anschlussbelegung

am Geber:

PIN	Beschreibung
1	UB + (supply for Tico)
2	Clock (Count input)
3	0V
4	Data (reset input)
5	nicht belegt

PIN	Beschreibung
4	Data
3	Clock
2	UB -
1	UB +

8 Inbetriebnahme

Es wird vorausgesetzt, dass der Geber richtig angeschlossen (siehe Kapitel 6) und MAC-ID sowie Baudrate korrekt eingestellt wurden (siehe Kapitel 7.1 und 7.2).

8.1 Versorgungsspannung einschalten

Nach dem Einschalten der Versorgungsspannung wird der Geber initialisiert und befindet sich dann im Status Pre-operational.

Durch die Geber-Initialisierungsroutine werden die Parameter des

Objektverzeichnisses aus dem EEPROM in den Arbeitsspeicher (RAM) des Gebers geladen.

Wurde der Geber noch nicht programmiert, sind alle Parameter auf Standardwerte gesetzt.

Wurde der Geber bereits programmiert, so arbeitet der Geber mit den zuletzt im EEPROM gespeicherten Werten.

8.2 Geberprogrammierung

Als Hilfsmittel für die Verwendung mit Standard-DeviceNet-Tools dient die sogenannte EDS-Datei (Electronic Data Sheet Specification). Sie ist als Diskette unter Sach-Nr. 1 543 083 oder als Download-Datei auf unserer Internet-Homepage verfügbar. Die EDS-Datei enthält die verfügbaren Geberparameter.

Beispiel zur Inbetriebnahme und Programmierung mittels Standard-DeviceNet-Tools und EDS-File (hier: DeviceNet Manager von Allen-Bradley):

DeviceNet Manager - HENGSTLE.PC3 Elle Edit Project Who Utilities Mew Window Help				
ecite sel 67 x # 22 BBBQQ ? N				
FENGSTLE.PC3				
Project Name : HENGSTLE	그			
Nelwork Network Data Rate Nelwork Description				
HENGSTLE 500 k Encoder Manual				
	<u> </u>			
Device List Node_1	_			
	·			
AC Drive Device Configuration - Enhanced Mode	×			
Photoelectric Node Marrie: Node 1 Node Address: 1	Chur			
Openeral Purp Vendor: HENGSTLER 6mbH	Close			
L Software Product Name: RA56-P/DeviceNet	Help			
Description: X-axis				
Excangent De Device Info	Set to <u>D</u> efaults			
C No. 4. 671 M				
Parameters	Modify Parameter			
Status: Default Values Perameter Group	Start Monitor			
Num Name Value [All Parameters]				
TR Number of Attributes sup 14	Load from File			
2R List of Attributes sup 14	Loss from Device			
4 Scaling function control FALSE				
5 Measuring Units per rev. 4096 Steps	Save to File			
Node_1				
Product R 8R Position Value 0 Steps	Save to Device			
Single Turn resolution 4096 Steps 10B Multi-Turn resolution 4096 Steps	Print to Tark File			
Туре G				

Durch den "Save to Device-Button werden die Parameter zum Geber übertragen. Bitte beachten Sie, dass die übertragenen Werte in dessen RAM gespeichert werden. Durch Ein- und Ausschalten gehen diese Parameter verloren.

Sind alle Parameter korrekt, so können diese spannungsausfallsicher im Geber-EEPROM gespeichert werden:

Menüeintrag "Utilities" \rightarrow "Basic Device Configuration" wählen. Im Feld "Device Node Address" die eingestellte Knotennummer des Gebers eintragen und die spezifischen Kommando-Parameter (siehe Screenshots) angeben.

Kommando "Parameter in Geber-EEPROM abspeichern":

Kommando "Geber-RAM auf Werkseinstellungen zurücksetzen":

Kommando "Geber-RAM auf EEPROM-Werte setzen":

8.2.1 Standardwerte-Übersicht

Zur einfacheren Identifierverwaltung verwendet DeviceNet das "Predefined Master/Slave Connection Set".

Über den Explicit Messaging Service können jedoch die folgenden Parameter kundenspezifisch angepasst werden.

Attribute ID	Bezeichnungen	Standartwerte
102	Code-Wertefolge	0 = CW
103	Enable Skalierung	Bit = 0, Skalierung AUS
104	Messschritte pro Umdrehung	Physikalische Auflösung pro Umdrehung
105	Gesamtanzahl der Messschritte	Physikalische Gesamtauflösung
106	Preset-Wert	Kein Preset

 Um die geänderten Parameter auch spannungsausfallsicher abzuspeichern, müssen diese über Servicecode 22 (0x16h) in das EEPROM übertragen werden (siehe Seite 28).

Die ursprünglichen Standard-Werte (Default-Werte bei Auslieferung) können per Servicecode 5 (0x05h) wieder zurückgeladen werden (siehe Seite 28).

Achtung: Die vorher im Geber-RAM vorhandenen Daten werden dadurch Überschrieben!

8.3 Beispiele für Skalierung und Abspeichern ins EEPROM

Master MAC - ID = 0 Slave MAC - ID = 63 (Note: All data values in HEX)

Enable Scaling: Set Class 100 (64h) Instance 1 (01h) Attribute 103 (67h) to 01h

Set Measuring Range to 100.000 = 00 01 86 A0 h (Lowbyte is transmitted first !) Class 100 (64h) Instance 1 (01h) Attribute 105 (69h)

Set Steps per turn to 1000 = 00 00 03 E8 h (Lowbyte is transmitted first !) Class 100 (64h) Instance 1 (01h) Attribute 104 (68h)

Save Parameters nonvolatile to EEPROM:

Set encoder RAM to EEPROM values:

Reset encoder RAM to factory defaults:

9 Technische Daten

9.1 Mechanisch

Gehäusedurchmesser	58 mm
Schutzart Welleneingang	IP 64 oder IP 67
Schutzart Gehäuse	Anschluss Bushaube IP 67 Anschluss Flanschdose IP 64 (IP 67 Option)
Flanscharten	Synchroflansch, Klemmflansch, Federblech, (Quadratflansch Option)
Wellendurchmesser	Vollwelle 6 mm, 10 mm; Hohlwelle 10 mm, 12mm
Max. Drehzahl	12000 min ⁻¹ (kurzzeitig), 10000 min ⁻¹ (Dauerbetrieb)
Anlaufdrehmoment	≤ 0,5 Ncm
Trägheitsmoment Rotor	3,8 10 ⁻⁶ kgm ²
Drehmomentstütze (Hohlwelle) Ausgleichsbereich axial Ausgleichsbereich radial	<u>+</u> 1,5 mm <u>+</u> 0,2 mm
Max. Wellenbelastung	Ø 6 mm axial 40 N, radial 100 N Ø 10 mm axial 40 N, radial 80 N
Schwingfestigkeit (IEC 68-2-6)	100 m/s² (10 - 500 Hz)
Schockfestigkeit (IEC 68-2-27)	1000 m/s ² (6 ms)
Betriebstemperatur	-40+85 °C
Lagertemperatur	-40+85 °C
Material Welle	Edelstahl
Material Gehäuse	Aluminium
Masse	Singleturn ca. 350 g, Multiturn ca. 400 g

9.2 Elektrisch

Im Geber wird keine galvanische Trennung verwendet.

Der Geber ist ein, bzgl. Erde, isolierter Knoten. Das bedeutet, dass es keinen Stromfluss zwischen V- und Erde gibt. Die Drain-Leitung ist geberintern durch ein RC-Glied

mit dem Gebergehäuse verbunden.

	gemäß EN 61010-Teil 1, Schutzklasse III,
Aligemente Auslegung	Verschmutzungsgrad 2, Überspannungskategorie II
Versorgungsspannung	10 30 V
Eigenstromaufnahme ST/ MT	220 mA/ 250 mA
EMV *	Störaussendung nach EN 50081-2
	Störfestigkeit nach EN 50082-2
Schnittstelle	CAN High-Speed nach ISO/DIS 11898
Schnittstelle	CAN-Spezifikation 2.0 B (11- und 29-Bit-Identifier)
Protokoll	DeviceNet nach Rev. 2.0, programmierbarer Geber
Auflösung Singleturn**	10 bis 14 Bit
Auflösung Multiturn**	12 Bit
Linearität	± 1/2 LSB (± 1 LSB bei Auflösung 13, 14, 25, 26 Bit)
Codeart	Binär
Werteaktualisierung	alle 5 Millisekunden
MAC-ID	Über DIP-Schalter einstellbar
Paudrata	Über DIP-Schalter einstellbar
Bauurale	auf 125, 250, 500 KBaud
Busabschlusswiderstand	Über DIP-Schalter einstellbar
	Bushaube mit
	2 x Kabelverschraubung
Anschluss	• 4 pol. M12 für Tico Anzeige + 2 x Kabelverschraubung
	M12x1-Stecker, 4-pol.

* Wichtige Hinweise zur EMV:

1. Die EMV-Werte gelten nur bei Einhaltung der Abschirmhinweise (siehe Kapitel 2 und 6.4)

2. Der Geber ist zum Anschluss an ein Netzteil vorgesehen. Sollte der Geber an ein Gleichspannungsnetz angeschlossen werden, so müssen die Geber vor Stoßspannungen geschützt werden.

3. In Umgebungen mit starken Impulsförmigen Störungen wird eine Plausibilitätsprüfung der Positionswerte empfohlen.

** Maximale Auflösung der Codescheibe; zusätzlich kann die gewünschte Auflösung durch Geberprogrammierung verkleinert werden.

10 Maßzeichnungen

10.1 Synchroflansch

S Bushaube 5. pol. M 12, radial

Z Bushaube 2 x Kabelverschraubung

T Bushaube 4 pol. M12 für Tico Anzeige + 2 x Kabelverschraubung

Der bei Kabel-Verschraubungen geforderter Durchmesser der Anschlusskabel: 7.0 ... 7.4 mm

 Buskabel mit Durchmesser 7.9 ... 8.7 mm können verwendet werden, wenn die Standard -Dichtungen gegen die beiliegenden Dichtungen mit größerem Durchmesser ausgetauscht werden.

10.2 Klemmflansch

S Bushaube 5. pol. M 12, radial

Z Bushaube 2 x Kabelverschraubung

T Bushaube 4 pol. M12 für Tico Anzeige + 2 x Kabelverschraubung

Der bei Kabel-Verschraubungen geforderter Durchmesser der Anschlusskabel: 7.0 ... 7.4 mm

 Buskabel mit Durchmesser 7.9 ... 8.7 mm können verwendet werden, wenn die
 Standard -Dichtungen gegen die beiliegenden Dichtungen mit größerem Durchmesser ausgetauscht werden.

10.3 Quadratflansch

S Bushaube 5. pol. M 12, radial

Z Bushaube 2 x Kabelverschraubung

T Bushaube 4 pol. M12 für Tico Anzeige + 2 x Kabelverschraubung

Der bei Kabel-Verschraubungen geforderter Durchmesser der Anschlusskabel: 7.0 ... 7.4 mm

Buskabel mit Durchmesser 7.9 ... 8.7 mm können verwendet werden, wenn die Standard -Dichtungen gegen die beiliegenden Dichtungen mit größerem Durchmesser ausgetauscht werden.

10.4 Federblech

S Bushaube 5. pol. M 12, radial

Z Bushaube 2 x Kabelverschraubung

T Bushaube 4 pol. M12 für Tico Anzeige + 2 x Kabelverschraubung

- Der bei Kabel-Verschraubungen geforderter Durchmesser der Anschlusskabel: 7.0 ... 7.4 mm
- Buskabel mit Durchmesser 7.9 ... 8.7 mm können verwendet werden, wenn die Standard -Dichtungen gegen die beiliegenden Dichtungen mit größerem Durchmesser ausgetauscht werden.

